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Abstract—This paper presents a stochastic planning frame-
work to determine the optimal sizing of BESS and PV for
campus microgrids based on realistic data obtained from the
University of Calgary campus microgrid. This grid-connected
microgrid includes a combined heat and power (CHP) plant and
a 400 kW solar photovoltaic (PV) system. Driven by campus man-
dates for efficiency, reliability, and sustainability, the planning
framework studies and identifies the optimal investment scenario
for upgrading the existing PV capacity and incorporating a
battery energy storage system (BESS). The practical framework
integrates the operational intricacies of the CHP plant and the
modeling complexities of the Alberta electricity market, including
the pool price and the nonlinear transmission and distribution
fees (T&D). By considering various stochastic scenarios regarding
electricity price, load growth, and gas price, the study develops
a daily optimization approach to consider the intricacies of the
electricity market, formulating the optimization framework as a
mixed-integer linear programming stochastic problem. Reported
key performance metrics include the net present cost (NPC) and
the saving-to-investment ratio (SIR) over the planning horizon.
Results support investing in distributed energy resources (DERs)
to reduce the supplied cost of energy.

Index Terms—Microgrid, Planning, Optimization, CHP, DERs.

I INTRODUCTION

Driven by sustainability, economic efficiency, and resiliency
mandates, university campuses worldwide are considering
shifting toward a more localized and sustainable approach
to supplying their electrical demand [1]. In this context,
microgrids have been the focus of research to meet the op-
erational requirements of contemporary campuses worldwide.
Microgrids are formally defined as a group of interconnected
loads and distributed energy resources (DERs) that act as a
single controllable entity and can operate in the grid-connected
or islanded modes of operation [2].

Limited works have discussed the planning and operation
of university campus microgrids. For example, [3] discusses
the optimization of the thermal and electrical demand of the
University of California, San Diego, aimed at minimizing
the operating cost and providing ancillary services. Moreover,
[4] proposes an energy management system (EMS) for the
University of Engineering and Technology (UET) campus that
includes a battery energy storage system (BESS), solar photo-
voltaics (PV), and microturbines. The proposed EMS considers
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the uncertainties in solar irradiance and electricity demand.
Moreover, the authors in [5], investigate the planning and op-
eration of the University of Guelph campus microgrid, where
the incorporation of a combined heat and power (CHP) plant
with different fuel types is studied, considering the investment
cost, fuel cost, operation and maintenance cost, electricity cost,
and profits made by selling electricity. Similarly, [6] performs
a techno-economic analysis of BESS and PV planning and
operation for a campus microgrid in Seoul, South Korea. The
paper considers various incentive programs, such as energy
arbitrage and peak shaving, maximizing discounted revenues
over a planning horizon of 25 years. This study assumes a
deterministic case study where the impact of uncertainties
associated with the random variables is not handled.

A considerable body of prior art has investigated the plan-
ning and optimal operation of microgrids. For instance, [7]
discusses the optimal operation of multiple CHP plants within
an AC microgrid with the objective of reducing the costs, and
[8] analyzes the optimal operation of hybrid microgrids in
the presence of renewable and distributed energy resources. In
addition to cost minimization, reducing emissions and environ-
mental costs have also been discussed in the research papers.
For example, [9] formulates a day-ahead optimal dispatch
to reduce environmental and operation costs in a microgrid
containing CHP plants and renewable energy resources (RES).
Similarly, [10] proposes a sustainable EMS that incorporates
DERs emissions and demand response in a microgrid. The
microgrid consists of PV, wind, and CO2-emitting DERs.
Moreover, the authors in [11] propose a two-part deterministic
EMS for a microgrid; the central EMS provides the fore-
cast for PV and load as well as setpoints for dispatchable
units, and the local power management handles voltage and
frequency regulation. Furthermore, [12] presents a physics-
informed neural network to lower the operating cost of a mi-
crogrid. The physics-informed approach is implemented using
a convolutional neural network (CNN) with the constraints
incorporated into the loss function. The proposed CNN-based
framework achieves accurate results while accelerating opti-
mization runtime by 400 times in a deterministic study. The
authors in [13] discuss the incorporation of large-scale electric
vehicles to lower the operation and environmental costs. Some
research has also considered the impact of thermal demand in



the microgrid EMS. For example, [14] and [15] investigate
the minimum cost of microgrid operation while considering
the thermal demand constraints.

On the planning side, [16] proposes a two-stage framework,
in which the optimal size of different components is deter-
mined in the first stage, and the operating cost of the microgrid
is minimized in the second stage. In addition, [17] presents
a bi-level approach, in which the upper-level deals with the
optimal sizing of the electrolyzer and hydrogen storage, while
the lower level optimizes their operation. Furthermore, [18]
explores the planning for a microgrid considering the lifetime
of the energy storage system, including factors such as com-
plete/incomplete cycles and thermal impacts. In addition, [19]
considers the planning for a residential microgrid consisting of
PV and a hybrid of BESS and thermal energy storage systems.
This paper also presents a comprehensive sensitivity analysis
of the electricity price, storage size, and PV capacity on the
payback period, demonstrating that higher electricity prices
favor the payback period.

In view of the abovementioned works, and considering the
relative scarcity of planning studies of a real-world campus
microgrid, this paper presents a 15-year stochastic planning
framework for the University of Calgary campus microgrid
!, located in Calgary, Alberta, Canada. The microgrid is
connected to the distribution network via multiple points of
interconnection and includes a CHP plant and on-campus
PV. Thus, the planning framework calculates the operation
costs of a set of pre-defined BESS and PV sizes, considering
the uncertainties regarding the electricity price and demand
as well as the gas price. In addition, without losing the
generality, the framework considers, for the first time in similar
studies, the practical nuances of the electricity market in
Alberta, Canada. Similar market characteristics can be found
in other jurisdictions such as Ontario, California, etc. Thus,
the contributions of this paper are as follows:

o Utilizing actual operation data from the University of
Calgary campus microgrid and the electricity price from
the Alberta Electric System Operator (AESO).

o Modeling the Alberta electricity market in detail, where
the electricity pool price is set by AESO and Transmis-
sion and Distribution (T&D) fees are collected by the
distribution facility owners (DFOs).

« Developing a stochastic 15-year planning for the Univer-
sity of Calgary campus microgrid, considering the BESS
lifetime, realistic plant constraints, and practical campus
operation needs.

The rest of the paper is organized as follows: Section II
details the optimization model. Section III presents the test
system, data, scenarios, and numerical results. Finally, Section
IV provides conclusions and future work.

II  OPTIMIZATION FRAMEWORK
The proposed mixed-integer linear programming framework
iterates over a set of pre-defined PV and BESS sizes and

IThe term microgrid is used loosely here given that the campus cannot
smoothly transition between connected and islanded operating modes.

optimizes the operation costs over a certain planning horizon.
The optimization is performed on a daily basis; to reduce
the computational burden, the optimization considers every 5%
day of operation. Thus, the scaling parameter v = 5 is used
to adjust for the planning period. The objective function and
constraints are presented in the following subsections.

A. Objective Function

The objective function comprises capital costs for the BESS
and additional PV units and the discounted value of campus
operation costs, including CHP plant generation costs, oper-
ation and maintenance (O&M) costs for PV and BESS, cost
of purchasing power from the grid, and the revenue earned by
selling power back to the grid. The mathematical formulation
for the objective function, O, is as follows:
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where €2, ), and D are the sets for scenarios, years, and days,
respectively. P,, represents the probability of each scenario w,
C™ is the investment cost, r is the discount rate, and Cffj% 4
represents the operation cost of the campus for scenario w,
year y, and day d. The investment cost C'™™ and the operation
cost Cy, ; are defined as follows:

Cinv = KP¥ x (Ipv Ig):/lstmg) KBESS % IBESS (2)
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where KP' and KBESS are the investment costs of PV and
BESS in $/MW , respectively. Additionally, P and IBESS
represent the installed capacities of the PV and BESS systems,
while ISXISH% denotes the existing PV capacity. Moreover, the
operation cost of the campus comprises four components: the
cost of electricity generated by the CHP plant, CSH' ), the
O&M cost for PV and BESS, C’O&M, the cost of purchasing
electricity from the grid, C® y.d> and the revenue earned from
selling electricity back to the grld C3, y.a- These components

are expressed as follows:
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where #{ denotes the set of hours in a day and PSP, and

H,, y.an are the power generated and heat rate of plant in



MW and $/MWh for scenario w, year y, day d, and hour
h, respectively. In equation (5), cPV is the unit O&M cost of
PV in $/MWh and P’ ,, is the output of PV in MW. In
contrast to the O&M cost of PV, BESS O&M cost is fixed
throughout the year and is represented by ¢SS in $/MW-year.
in equation (6), P}, ; , is the power exported to the grid and
Otpp,w,y,d,h TEPresents the electricity pool price in MW and
$/MWh respectively. Furthermore, in (7), C'P oy, and C” 7b
show the hourly and daily cost of electricity in $ which will
be explored in the subsequent subsection.

B. Alberta Electricity Market Structure

The electricity market in Alberta operates under a hierarchi-
cal structure. The hourly electricity pool price is determined
in the spot market by AESO. Subsequently, DFOs apply
additional T&D fees and local access fees (LAF). As a result,
some components of the electricity bill are calculated hourly,
while others, such as demand charges, are calculated daily.
The overall hourly component is formulated as follows:
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where aion, Qoff, and oy represent the electricity rates for on-
peak and off-peak times, and LAF in $/MWh respectively.
Time-of-use (TOU) pricing defines the on-peak period as
8:00 am. to 9:00 p.m. on weekdays, excluding weekends
and statutory holidays Other times are considered off-peak.
Additionally, e 5, and e y.d,p are binary parameters that
indicate the TOU status of the ‘hour.
The electricity bill daily component is as follows:

A
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where «y. denotes the fixed service charge in $, and e,
oy, and oy, represent the rates for the Non-Ratchet Demand
Charge, Facility Charge, and Demand Charge, respectively, all
in $/MVA. Furthermore, b, , 4 and V,, , 4 denote the billing
demand and the daily peak purchased power in MW. The
billing demand is defined as the greater of the daily peak
purchased power and 90% of the peak over the previous 365
days, known as the ratchet demand, as follows:

max

bw,y,d = max V%y’d, 0.9 x
d'e[d—365,d—1

] Vw,y,d/} (10)

The billing demand requires identifying the daily peak
power, as shown in (11)—(13). Note that these equations are
the linearized form of a maximum function.
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where PD,, , 41 is a binary variable for peak detection and
M is a sufficiently large number. Similarly, b, , 4 is linearized
by (14)—(17), as follows:

boy.d = Viy,d (14)

by = Fpy.a (15)
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buyd < Pl ya+BDyyax M (17

where BD,, , q is a binary variable selecting daily peak vs.
the ratchet demand, and F, | ; is the historical ratchet demand
defined in Equation (10).

C. Grid Constraints

To ensure appropriate interactions with the grid, constraint
(18) disallows buying and selling power from/to the grid
simultaneously, while constraints (19) and (20) impose an
upper limit on the power purchased or sold.

S b
Uy, dh T Uoydn <1 (18)
b b b,max
Poydn S Uoyan P (19)
S s S,max
Pw ,y,d,h < uw,y,d,h x P (20)
where ug, , ;, and uw ,d,p, are binary variables for selling

and buying electricity, respectively. Furthermore, PP™* and
P M3 represent the maximum power limits for buying and
selling electricity from/to the grid in MW.

D. CHP Plant Constraints

The CHP plant output is limited by the upper and lower
bounds defined in (21) and (22), respectively. Ramp-up and
ramp-down limitations are enforced by (23) and (24). Addi-
tionally, (25) restricts the number of times the CHP plant can
be turned off during its operation. Constraints (26) and (27)
ensure that the minimum uptime and downtime requirements
of the plant are satisfied.

PS g n < PP 1)
PO > PEPM s (22)
PO — PSS < P (23)
P 1 = PSRy, < P (24)
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where PCHPmax  pCHPmin ©prd 5nq P represent the maximum
and minimum CHP plant output power in MW, and the ramp-
down and ramp-up limits in MW/h, respectively. Additionally,
|H| denotes the number of hours in a day, while 7°%, T¢
and TY9 are the allowable off-times, minimum uptime, and
downtime requirements in hours. Furthermore, g}, ;, is a
binary variable which indicates whether the CHP plant is on
or off.

E. BESS Constraints

The BESS state-of-charge (SoC) is modeled in (28). In this
equation, SoC,, 4 4., represents the SoC of the BESS, FEiy
is the total energy of the BESS, and n denotes the charg-
ing/discharing efficiency. Additionally, PS', ,, and PSS
show the charging and discharging power of the BESS in MW.

S0Cu,y,d,n = S0Cyy,d,n—1

N n X P:;},ly,d,h B Pgi,z,d,h (28)
N X Eiy

Constraint (29) prevents simultaneous charging and dis-
charging by utilizing the binary variables I (f)hy o and I f}ify’ dhe
which indicate whether the BESS is in charging or discharging
mode, respectively. To limit the charging and discharging
power of the BESS, constraints (30) and (31) put an upper
bound on the charging and discharging power of the BESS.
In this regard, pehmax - gpg pdismax jndicate the maximum
charging or discharging power respectively.

h dis
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Fig. 1. University of Calgary campus microgrid schematics.

FE. Supply-Demand Balance

Constraint (32) ensures that, at any given time, the total
supply power is equal to the total demand power, where

Pi‘% a,» 18 the campus electricity demand.

d S ch o pv CHP
Foyan T Foyan+ Poyan = Foyan Poydn

+ Pgi,sy,d,h + PB,y,d,h (32)

III OPTIMIZATION RESULTS

A. Test System

The test system is based on the University of Calgary
campus microgrid, as shown in Fig. 1. The system is made up
of 5 islands, which are disconnected in the default operating
mode. The Islands are supplied by three different distribution
substations. For simplicity, this study assumes that all micro-
grids are unified and that the campus exchanges energy with
the upstream grid as a single entity. We defer the electrical
consideration of this networked microgrid structure to future
works, as explained in Section IV.

B. Data

The presented study is based on realistic data from the
campus microgrid and the Alberta electricity market. The
optimization scenarios are based on the data for 2023. The
annual load and PV generation profiles are depicted in Fig-
ures 2 and 3. Figure 4 illustrates the electricity pool price [20].
Other components of the electricity bill, such as T&D fees are
presented in Table I. The LAF rate is 15.507 $/MWh [21]. The
big M values for linearizing max functions are 5 and 2.79 for
the base case and cases with BESS and additional PV.

The real discount rate is assumed 2.75%, and the nominal
discount rate is calculated using the Fisher equation and
considering Canada’s inflation rate, which is equal to 2.6%.
Moreover, the BESS and PV capital costs are presented in
Table II [22], [23]. A contribution of this paper is the realistic
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Fig. 4. Alberta electricity pool price and its duration curve.

modeling of the CHP plant heat rate and maximum output
functions according to the turbine manufacturer specification
[24]. Thus, a temperature-dependent CHP plant heat rate and
maximum power output are estimated by fitting quadratic
regression models to operation data obtained from turbine
characteristic curves. The results are shown in Figure 5,
achieving mean absolute percentage errors (MAPE) of 0.24%
and 0.35%, respectively. The historical ambient temperature,
used for the regression, is illustrated in Fig. 6. Table III
summarizes key operational values of the CHP plant provided
by the University Facilities Team. The minimum output of the
CHP plant is set to 50% of the theoretical maximum output,
PCHPM which is dictated by the maximum output power
curve in Figure 5. Furthermore, the maximum output of the
CHP plant is set as the minimum of Py "™ and pHbmax,
which is the practical CHP plant output.

TABLE I
TRANSMISSION AND DISTRIBUTION FEE PARAMETERS [25]

Parameter  Value Parameter  Value

Qse 29.879  age 298.788

afe 20.845  aon 9.979

QAprde 60.092  a,fy 7.325

TABLE II
BESS AND PV PARAMETERS

Parameter Value Parameter Value
KBESS 2917.83 x 103~ pehmax pdismax  fo5 1 2}
cBESS 70.31 x 103 K 1245.53 x 103
n 0.92 cPY 0.0035 x 103
BESS Lifetime 15 years PV Lifetime 20 years

TABLE III
CHP PLANT OPERATION PARAMETERS

Parameter Value Parameter Value
prd 10 pru 10
Pb,max 10 Ps,max 10
CHP,max CHP,min CHP,max
Py 15 Pd 0.5 x Py
™ 5 T 5
Tof( 6
4
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E 16000 s Heat Rate Measurement 9300 E
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Fig. 5. CHP plant turbine characteristics.
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Fig. 6. Ambient temperature and its duration curve.

C. Scenarios

To account for uncertainties in electricity and gas prices as
well as load, this study generates multiple growth scenarios.
For the gas price, forecasted values from [26] are used to
generate a base and a high-growth profile. A 1% and 5%



TABLE IV
OPERATIONAL COST, TOTAL COST, INVESTMENT SUMMARY, SAVINGS, AND SIR FOR DIFFERENT PV AND BESS CONFIGURATIONS

BESS Cap PV Cap Operational NPC ($) Total NPC ($) Investment ($) Saving ($) SIR
0.00 0.40 76,460,577.95 76,460,577.95 0.00 0.00 —
0.50 0.80 74,331,372.40 76,163,951.01 1,832,578.61 2,129,205.55 1.16
0.50 1.20 73,331,635.79 75,537,873.40 2,206,237.61 3,128,942.16  1.42
0.50 1.60 72,345,887.00 74,925,783.60 2,579,896.61 4,114,690.95 1.59
0.50 2.00 71,374,706.87 74,328,262.48 2,953,555.61 5,085,871.08 1.72
1.00 0.80 72,878,232.54 76,169,730.75 3,291,498.21 3,582,345.41  1.09
1.00 1.20 71,871,269.39 75,536,426.60 3,665,157.21 4,589,308.56  1.25
1.00 1.60 70,877,737.50 74,916,553.71 4,038,816.21 5,582,840.46  1.38
1.00 2.00 69,789,591.64 74,202,066.85 4,412,475.21 6,670,986.31  1.51
2.00 0.80 69,333,955.39 75,543,292.81 6,209,337.42 7,126,622.56  1.15
2.00 1.20 68,349,676.42 74,932,672.84 6,582,996.42 8,110,901.53  1.23
2.00 1.60 67,270,851.59 74,227,507.01 6,956,655.42 9,189,726.36  1.32
2.00 2.00 66,199,028.78 73,529,343.20 7,330,314.42  10,261,549.17  1.40
annual growth scenario is considered for the electricity pool x10°
price. A 0% and a 1% annual growth scenario is considered for 0.765
the electricity demand. This results in eight equally probable %10
scenarios used across the 15-year planning horizon. The nom- 0.77+ 0.76
inal rating sets for the BESS and PV in MW are determined as o
{0.5,1,2} and {0.8,1.2,1.6, 2}, respectively. The BESS has §0.764 0755
a C-rate of 0.25. g “
2075 g
D. Numerical Results and Analysis I 015 E
. z
Table IV, and Figures 7 and 8 present a summary of the S 0.744
operational net present cost (NPC), total NPC, investment e 0.745
costs, operation savings, and the saving-to-investment ratio 0A7(3) > .
(SIR) [27] for a range of PV and BESS configurations. Each 05 074
scenario optimization encountered an insignificant number of 1 1
infeasible days, 0.6% at most, attributed to solver memory , 13 1.3 ‘
. . . . BESS Capacity (MW) 2 2 PV Capacity (MW)
issues. To account for these infeasible days, the operation cost
of infeasible days was replaced by the average operation cost. Fig. 7. Total NPC vs PV-BESS configurations
The results demonstrate that as the PV capacity increases, 17
regardless of the BESS size, operational NPC decreases due
to the decreased reliance on electricity purchases from the 1.8 16
grid and reduced generation from the CHP plant. Moreover,
it is observed that the rate of increase in operational savings 1.6 115
exceeds the incremental rate of PV investment, resulting in a
strictly increasing SIR for PV installation. 14 &2

Regarding the BESS, the results show a decreasing opera-
tional and total NPC as the BESS size increases. On the other
hand, the SIR, signifying the returns per unit investment, fol-
lows the reverse trend; the maximum SIR of 1.72 is observed
for a moderate BESS investment of 0.5 MW paired with 2.0
MW PV. Increasing BESS beyond 0.5 MW at the maximum
PV capacity results in a reduced incremental economic benefit
as SIR drops to 1.51 at 1 MW BESS and further to 1.40 at
2 MW BESS. Thus, the findings suggest diminishing returns
with larger BESS installations, where the marginal increase in
benefits reduces as the BESS capacity grows.

The findings motivate optimization with continuous vari-
ables for PV and BESS sizes, which is deferred to future work.
Saying that, it is intuitive for the BESS-PV duo to have an
inflection point in the SIR function. Comparing the NPC and
SIR values across all scenarios reveals that the lowest NPC,
equal to ~$73.5M, belongs to the scenario with the highest

1.5

BESS Capacity (MW) 0.5 PV Capacity (MW)

Fig. 8. SIR vs PV-BESS configurations

PV and BESS capacities, 2 MW each. On the other hand,
the highest SIR, equal to 1.72, is achieved for a 0.5 MW
BESS and 2.0 MW of PV. The analysis supports investing
in increased PV capacities complemented by moderate-sized
BESS to maximize economic returns, aligning with campus
objectives of efficiency, reliability, and sustainability.



IV  CONCLUSION AND FUTURE WORKS

This study presents stochastic planning for the University
of Calgary campus microgrid over a 15-year planning horizon.
The framework is based on practical data and considers the
realistic constraints of the CHP plant and the intricacies of
the campus electricity bill. The results support investment in
PV paired with moderate-sized BESS, given the diminishing
return per unit of investment as the BESS capacity increases.
Note that higher BESS capacities still yield lower total NPC,
and thus may be further justified by the campus resiliency
mandates. Future works include:

« Carrying out sensitivity analysis to pool price profiles.

o Exploring the impact of operational energy forecasting

accuracies on the planning study findings.

o Expanding studies to networked microgrids, considering
continuous variables for the PV and BESS capacity.

o Determining the optimal distributed siting of PV and
BESS units on campus, considering the networked mi-
crogrid operational and power flow constraints.

« Developing an EMS accounting for the networked micro-
grid structure, as well as operational constraints, includ-
ing power flows and BESS degradation.

o Conducting transient and stability feasibility studies for
grid-connected and islanded operation modes.
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